Adaptive Flushing of Building Drinking Water Taps Using Real-Time Oxidation-Reduction Potential (ORP) and Temperature Signals

Ernesto Martinez Paz, Lutgarde Raskin, Krista Wigginton, Branko Kerkez

HIC 2022 – Bucharest, Romania

Environmental Biotechnology Lab

Real-Time Water Systems Lab

Building plumbing causes detrimental effects to drinking water quality. Flushing is a solution.

Image source: Proctor et al. AWWA Water Science. 2020.

Real-time sensing at the tap will inform automatic flushing to maintain healthy water

Oxidation-Reduction Potential (ORP) correlates to disinfectant concentrations in drinking water.

We designed and built custom sensor nodes to deploy in taps and measure water quality in real time

Github.co

Github.com/kLabUM/DrinkingWaterNodes

*Not actual size

Deployed nodes at more than 30 households directly at the taps in Ann Arbor and Mexico City

We deployed at more than 30 households directly at the taps in Ann Arbor and Mexico City

We deployed at more than 30 households directly at the taps in Ann Arbor and Mexico City

Ann Arbor uses chloramine as a residual disinfectant and is a homogenous system, so we expect same water quality

ORP signals from Ann Arbor measuring adequate chloramine levels in drinking water and capturing spatial trends.

Mexico City uses free chlorine as a residual disinfectant and is a heterogeneous system, unsure what to expect

58 Treatment Plants for 9M people

Mexico City, Mexico

Differences in ORP signals from Mexico City highlight water quality is not the same.

Can real-time ORP sensing can be used to actuate wireless valves and rationally flush building tap water

Real-time ORP

Wireless valve

Better water quality

I compare different flushing approaches experimentally to determine how this technology application may look like

No Flushing

Static fixed-volume

Fixed flushing resulted in a less variable ORP signal compared to no flush.

Fixed flush always resulted in higher ORP averages at the tap. Water quality improved.

Adaptive flush was programmed to flush when an ORP threshold was crossed

Total chlorine concentrations from grab samples confirm there is a restitution of chlorine after flushing.

Adaptive flush resulted in lower ORP averages due to excessive flushing preventing the probes from reaching equilibrium.

..

Conclusions

- Monitoring:
 - ORP detects different disinfecting species in drinking water
 - Real-time sensing provides insights to utilities and consumers on the system's performance (different water quality, intermittency)
 - Building plumbing water quality dynamics.

- Control:
 - ORP detects changes in concentrations, therefore we can automate and rationalize flushing in taps.
 - In need of operational development to use ORP probes within their capabilities

A Connected Urban Water Cycle

Drinking water sensing has come a long way, applications and implications are endless!

Kerkez Group

Funding:

College of Engineering Blue Sky initiatives - University of Michigan National Science Foundation – RAISE Grant #: 1744724

Wigginton Group

